侠客书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!
侠客书屋 >  离语 >   第348章 往前

节点与网络中其他节点的交互都是通过其邻居节点来 进行的,因此节点的邻居越多,意味着该节点能够 向外传递的信息越多,从网络外部接受信息也越容易。 有向网络中,又可以定义出度中心度、入度中心度。

社区发现是根据网络中的边的连接模式,把网络顶点划分为群组。将网络顶点划分为群组后最常见的属性是,同一群组内部的顶点之间紧密连 接,而不同群组之间只有少数边连接。社团发现的目的是就要找到网络内部不同群组之间的自然分割线。简而言之,它是一个把网络自然划分为顶点群组的问题,从而使得群组内有 许多边,而群组之间几乎没有边。然而,“许多”和“几乎没有”到底是多少, 这个问题值得商榷,为此提出了多种不同的定义,从而产生了不同的社团发 现算法8基于层次聚类的算法。

第一阶段:称为modularity optimization,主要是将每个节点划 分到与其邻接的节点所在的社区中,以使得模块度的 值不断变大; 第二阶段:称为munity Aggregation,主要是将第一步划分 出来的社区聚合成为一个点,即根据上一步生成的社 区结构重新构造网络。重复以上的过程,直到网络中 的结构不再改变为止。步骤:1.初始化,将每个点划分在不同的社区中; 2.对每个节点,将每个点尝试划分到与其邻接的点所在的社区中,计算此时 的模块度,判断划分前后的模块度的差值Δq是否为正数,若为正数, 则接受本次的划分,若不为正数,则放弃本次的划分; 3.重复以上的过程,直到不能再增大模块度为止; 4.构造新图,新图中的每个点代表的是步骤3中划出来的每个社区,继续执 行步骤2和步骤3,直到社区的结构不再改变为止。 !在2中计算节点的顺序对模块度的计算是没有影响的,而是对计算时间有影响。

数据缺失的原因数据采集过程可能会造成数据缺失;数据通过网络等渠道进行传输时也可能出现数据丢失或出错,从而造成 数据缺失;在数据整合过程中也可能引入缺失值删除法删除法通过删除包含缺失值的数据,来得到一个完整的数据子集. 数据的 删除既可以从样本的角度进行,也可以从特征的角度进行。 删除特征:当某个特征缺失值较多,且该特征对数据分析的目标影响 不大时, 可以将该特征删除 删除样本:删除存在数据缺失的样本。 该方法适合某些样本有多个特征存在缺失值,且存在缺失值的样本占 整个数据集样本数量的比例不高的情形 缺点:它以减少数据来换取信息的完整,丢失了大量隐藏在这些被删除数据 中的信息;在一些实际场景下数据的采集成本高且缺失值无法避免,删除法可 能会造成大量的资源浪费均值填补计算该特征中非缺失值的平均值(数值型特征)或众数(非数值型特 征),然后使用平均值或众数来代替缺失值缺点一:均值填补法会使得数据过分集中在平均值或众数上,导致特征 的方差被低估 缺点二:由于完全忽略特征之间的相关性,均值填补法会大大弱化特征 之间的相关性随机填补随机填补是在均值填补的基础上加上随机项,通过增加缺失值的随机性 来改善缺失值分布过于集中的缺陷。

等距离散化(Equal-width discretization):将数据划分为等宽间隔的区间,这种方法需要先确定区间的个数n,再根据最小值min和最大值max计算出每个区间的间隔长度(max-min)\/n,相邻两个区间的宽度都是相同的。等频率离散化(Equal-Frequency discretization):将数据划分为相同的数量级别,每个区间包含的记录数相等。这种方法首先将数据按照大小排序,然后将排序后的数据分成n等份,每份个数为数据总数\/n,在每个区间的边界处划分数据。基于聚类的离散化:将数据分成若干个簇,簇内的数据相似度高,簇间数据相似度低。具体实现时可以使用聚类算法如k-means、dbScAN等。自适应离散化:通过迭代的方式,不断根据数据的特性调整区间的边界,以达到最优的离散化效果。下面分别以等距离散化、等频率离散化、基于聚类的离散化和自适应离散化为例子,分别列出具体的例题:等距离散化假设我们有一个包含1000个学生身高数据的数据集,我们想将身高离散化成10个等宽的区间,以下是离散化方法:计算身高的最小值和最大值,假设最小值为140cm,最大值为200cm。计算每个区间的宽度,假设共10个区间,每个区间的宽度为(200-140)\/10 = 6cm。根据每个学生的身高,将其分入相应的区间。等频率离散化假设我们有一个包含200家公司的财务数据的数据集,我们想将每个公司的营业收入离散化成5个等频率的区间,以下是离散化方法:将所有公司的营业收入升序排序。计算每个区间的数据数量,在本例中,因为共有200个公司,所以每个区间包含40个公司。找到每个区间的边界,比如第一个区间的最小值和第二个区间的最大值,这两个值之间的所有公司的营业收入都属于第一个区间。

侠客书屋推荐阅读:我来自黄泉掀饭桌!小疯批夺回气运后不忍了一吻定情,总裁甜蜜囚爱开局逃婚,疯批太子穷追不舍穿成霸总娇妻失败后,在恋综选夫穿越四合院之我有系统我怕谁杂货铺通古今,我养的将军醋翻了快穿神君大人的糖去哪了逼她给白月光顶罪?渣父子我不要了师尊怎么那么撩你崽崽让哪里逃灵异界大佬:全家跪求我带飞江澄重生后开局出生在魔域盗墓,被偷听心声后我暴露了荒村血祭人在奥特:从海帕杰顿幼虫开始快穿阎罗王:这个女配不太毒惊!陆爷的心尖宠竟是马甲大佬HP万人迷在圣芒戈诱反派!勾疯批!顶级尤物撩疯了千方百计与千方百计快穿:殿下她是个万人迷重生80,从在大兴安岭打猎开始少年白马:把自己炼成药人霍格沃兹:魔法世界第一个资本家谁懂啊?我粉的主播成影后了!陈情令:如果长安牛马实录穿成反派大佬的漂亮毒妻七零:穿成了早逝炮灰她逆天改命书穿圣母女主:老娘双刀定人生娇美知青与糙汉酱酱漾漾的生活炮灰前妻觉醒后决定拿钱走剧情帝妃掌妖异血瞳乱天下在老师面前乱舞的麻瓜从mc开始的万界之旅逐星传说原神:我是天理,不是你们老婆!Re:艾蜜莉雅很想让我当王妃!特摄盘点:铠甲假面?统统碗里来炮灰太娇软,掐腰就会哭绑定神豪系统,我有亿点点钱侯府丑女,她又美又辣从合租开始恋爱穿越兽世,我家夫君超粘人钟小艾前男友,亮平公报私仇查我温助,听说你想结婚中间地带风雨凄凄花落尽大院娇妻美又飒,冷面硬汉要破戒
侠客书屋搜藏榜:王爷别虐了,你的暗卫娇妻早跑了影视遇上对的人互绿!你舔白月光,我撩隔壁残王【变形金刚】俘虏求生记重生后,阿姨卷起来弃女觉醒退婚后,清冷权臣他以身相许精灵:从当大木博士助手开始误撩顶级豪门大佬后被天天放肆宠快让开!那个女孩是我的人生如意全靠演技这个女主竟然是食死徒明日方舟:迷途的旅人重生为博士奴隶修仙传繁花错位似流年王妃状态易崩坏公主殿下请理智,亡国敌君是绿茶开局就遭百鬼缠身要相信阳光总在久别重逢,傅先生总说我始乱终弃双面恋人我在斗罗开酒馆,醉倒朱竹清暗相思,无处说,夜来惆怅烟月用尽我的一切奔向你南街小子新书徒儿下山找师姐吧快穿:漂亮老婆又被抱走了八零二嫁小甜妻火影:斑爷等等我们不是兄弟情吗野小子与野百合太一神主之斗罗大陆梨子圆了小知青从末世来穿越后只想好好活着火影直播从剧场版开始变强从喰种开始我家当铺当鬼神我的二次元之旅,启程了闪婚大叔后,挺孕肚离家出走我才不是配角火影:人在宇智波,我能提取词条小道姑直播太准!日赚一亿成首富我们的岁月长河虎啸乾坤:万物传奇诡异修仙世界:我能豁免代价双世青佩十七时五十八分的落日快穿:炮灰剧本?抱歉我才是女主同谋合污【刑侦】杨然修仙传让你进宫当刺客:你居然偷了女帝的心
侠客书屋最新小说:缅北之价重生八岁,我是高考神童双人末日求生:杀神与花瓶校花我父亲是仙帝诗国行:粤语诗鉴赏集鸿蒙动乾坤剑神叶枫快穿之和男神生宝宝夜半鬼语录护花仙尊:系统助我踏碎九天觉醒异能,众天骄被我折服!随机传送门:万界美人图鉴又更新两娃嗷嗷哭?随军!抱去找首长爸奥特:你说我哥怎么了理科生在修真界搞炼丹革命五姓嫡脉:躺赢大唐烬穹天灯塔求生:我的岛屿不是女儿岛!在暮色中停笔资本家媳妇儿凝脂明艳,首长心痒万古第一鼎爱你,原来不止今生欢不择陆穿越乱世成流民,从带枪逃荒开始我靠天雷在诡异世界开宗立派高武:开局黑虎拳,砍翻乱世!亮剑:我打鬼子就有用不完的弹药官梯:从基层公务员到权势滔天小区公约第13条书穿76年成了被送回的胖假千金麋鹿领主重生仙帝只是我的小弟四合院:魂穿何雨水,手撕何雨柱民国,从军阀到横扫亚洲我,历史唯一仙!快穿之我只想超脱啊穿越到五代十国当女帝绝命一枪:抗日风云录丛林本秩青灯照剑影全球岛主:开局抽到多子多福神雕:开局令东来,领悟浩然剑气综影视:小可怜我来宠大唐:开局救下李二,曝光我身份娱乐:全新的大蜜蜜就是香序列劫:洪荒碎星录平凡青云路僵约:开局编辑盘古基因娱乐:杨老板说我肾功能不错陨星武脉