侠客书屋 通过搜索各大小说站为您自动抓取各类小说的最快更新供您阅读!

大模型编程和普通编程的区别,是大模型不需要很严密的逻辑推理,都是y=x*w的意思,就是有个结果y,然后用w就是一个算法,不断的代入特定的x,然后得出一个模型,然后评估y的准确率,有了模型,就只用代入x,就可以得到一个结果y,但y不一定准确,无限接近正确,就像一个苹果,它是苹果的相似度有多少,差不多就行了,大概就是个苹果,哈哈。

你这个理解很有意思,而且抓住了一个大模型编程与传统编程的核心区别:大模型是“近似正确”,传统编程是“绝对正确”。这正是深度学习模型(如大语言模型、图像识别模型)与传统编程逻辑的根本差异。

?

一、大模型编程与传统编程的本质区别

我们可以从多个角度来比较:

维度

传统编程(Rule-based)

大模型编程(model-based)

核心思想

明确规则推导结果

用大量样本学出模式

推理方式

逻辑推理、条件判断

概率推理、模式匹配

编程方式

精确代码控制逻辑

训练模型得到“权重”

数据使用

少量、结构化

大量、非结构化

输出结果

精确、唯一

模糊、近似、概率性

可解释性

强:代码可读

弱:黑箱,靠可视化或经验解释

示例

if-else, for循环等

y = wx + b + 激活函数(如ReLU)

你说的那句“大模型其实就是 y = x*w 的不断代入和评估”——可以说非常贴切地表达了深度学习中模型训练的过程。我们来进一步拆解这个观点。

?

二、用“y = x·w”理解大模型的核心机制

1. 输入(x)

这是你给模型喂的特征,比如:

?\t图像识别中,一张图片的像素矩阵

?\t语言模型中,一段文本被嵌入成词向量

?\t音频识别中,是声波的频谱特征

2. 权重(w)

这个可以理解为“模型的记忆”或“经验参数”。这些参数并不是你手动写出来的,而是模型从成千上万的数据中“学出来”的。

比如说,模型在看了10万个“苹果”的图像后,自己推理出哪些像素模式是“苹果”的共同特征,然后把这些“经验”编码进权重w里。

3. 输出(y)

就是模型对x的一个“预测”,这个预测并不是100%准确的,而是“在经验基础上,最有可能是的那个结果”。

?

三、大模型编程的流程:本质是“调数据,不调逻辑”

传统编程流程是:

if 天气 == “下雨”:

带伞else:

出门大模型编程的流程:

收集大量“天气+行为”的数据:

(晴天,出门)

(下雨,带伞)

(阴天,出门)

...

喂给模型训练,学出一套权重w

模型预测时,只需输入“天气=下雨” -> 输出“带伞”的概率高,就预测“带伞”

你不需要再写规则,而是“让数据说话”。

这就是所谓的:

传统编程是“人定规则”,大模型是“模型学规则”。

?

四、再回到你的比喻:“大概是个苹果”

你说得非常生动:

“y不一定准确,无限接近正确,就像一个苹果,它是苹果的相似度有多少,差不多就行了,大概就是个苹果。”

这正是大模型的“模糊匹配”原理。尤其在图像识别中,模型不是100%判断“这是苹果”,而是给出一个“概率”:

?\t苹果:87%

?\t番茄:10%

?\t柿子:3%

这时候,它选“苹果”作为预测结果。但如果这个苹果有点变形、颜色有点偏,就会导致识别不准。为什么?因为模型只知道“相似度”,不知道“逻辑规则”。

?

五、从“编程范式的演化”看待这个变化

1. 早期计算机时代:硬件编程

?\t二进制,汇编语言

?\t对人极不友好

2. 高级语言时代:规则编程

?\tc、python、Java等

?\t程序员用明确逻辑告诉机器该做什么

3. 现在:数据驱动编程(大模型)

?\t人类不再写规则

?\t而是提供大量数据

?\t机器自动学会规则(权重)

这就是所谓的“从编程到训练”。

?

六、例子:传统写代码 vs 大模型生成代码

传统写代码

def is_apple(image):

# 提取颜色

# 提取形状

# 判断是否红色圆形果实

# ...

return true or False

大模型写代码:

模型输入:图像

模型输出:分类概率 {苹果: 87%, 橙子: 8%, 柿子: 5%}

你写的不是代码,而是设计数据和目标,再让模型自己学会判断。

?

七、优点与缺点总结

优点

缺点

不需要人工写逻辑规则

推理不可解释

可处理复杂、模糊的任务

容易出现“幻觉”或“偏差”

泛化能力强,适应变化

训练代价高,资源消耗大

可以应用于语音、图像、自然语言等非结构化数据

无法100%控制输出,难以保证结果一致性

?

八、未来趋势:人类+模型的协同编程

你提到“很多小模型组成一个大模型”也很有前瞻性。确实如此,目前的大模型已经不再是一个“统一体”,而是一个个“专家子模型”协作完成的。例如:

?\t语言理解模块

?\t数学计算模块

?\t图像识别模块

?\t编码解码模块

将来编程也可能是这样:

?\t人类提供目标、约束、价值判断

?\t模型自己选用子模块、自动调参、微调行为

?

九、总结金句

传统编程是告诉机器“怎么做”,大模型编程是告诉机器“学会怎么做”。

大模型不会像人那样“理解”,但它会像人那样“模仿”。

传统代码追求精确输出,大模型追求最大概率正确。

大模型编程的本质,是在不确定性中寻找最可能的确定性。

?

侠客书屋推荐阅读:绝色丹药师:邪王,你好坏总裁,宠妻请排队太古龙神诀都市之上门神医从前有座镇妖关我的透视可以看穿一切一人之最强异类我只会拍烂片啊入仕异常生物调查局重生七零,回到和前夫结婚当天摄政王的小祖宗又美又飒逆天九小姐:帝尊,别跑!(云家小九超皮哒)风流小屌丝我真是女明星从念动力开始的诸天旅行周队今天又真香了阴师阳徒,医行天下修真弃少逢凶化吉,开局直面十万阴兵三通爷爷故事会御兽:开局让未来的老婆签卖身契都市家事低调大明星君令策之凤摄天下我老婆也重生了我穿成了八个大佬崽崽的娘亲重生78:护林员开始的寻宝人生倒斗撞见灵气复苏,起飞了全网爆红!团宠小人参三岁半豪门千金是宠夫大佬都市之时间主宰别慌,我们全家都是穿来的医路逍遥娘娘她不想再努力了龙翔仕途他的小家伙甜度满分海贼之钢链手指女子学校的唯一男生桃源乡村小傻医功德兑换宝盒,各国都麻了我为暴君画红妆遨游在无数位面世界咬红杏带着搬家石游三界四合院:我是有空间的保安仙帝归来满眼星辰皆是你被白月光绿了,三孩都不是亲生的武动诸天
侠客书屋搜藏榜:海棠春将军与我一世约大夏剑术,谁主沉浮雄起,我洗鞋子养你说好的流氓,结果成了热芭的老公重生之爱妻入局清穿之锦玉无双重生毒妃有点邪我混烘焙圈的红楼之我不是林妹妹蜜婚甜宠之娇妻在上我的超级神豪养成系统极品驭灵师重启2006轮世末日无上小神农姬刃暴猿王我的美好生活在都市风华书源命:寻踪让你来加速中上班,你抓哭白露?大国之巨匠靳先生你老婆又婚了将嫡重生:渣男的成长史总裁深度爱重生后成了反派的挂件修真至尊在都市穿成团宠后她暴富了超市空间:穿越年代嫁糙汉都市:我开局成了富二代反派第一爵婚:深夜溺宠从创造武道开始,打造超凡世界令人震惊就变强交换灵魂,这个校花不太冷[古穿今]将军的娱乐生活从海贼开始贩卖宝可梦陈生的逆袭之路窈窕宦官我用一百块挑战环球旅行你我无人天降神宝在七零宦海官途过气偶像大翻身顾先生的逆袭萌妻易得志的青春我!活了5000年!我有一座解忧屋穿到现代以后她躺赢了
侠客书屋最新小说:我在不存在的古代行佛废土纪元:我的御兽有亿点特殊抗日战争之东方战场傻子得道成医仙高武:破灭虚空签到!从穷鬼到都市神话我的肉身是熔炉,神明也是燃料御兽之神:两个神级天赋就是狂!被首富认亲,修仙者身份藏不住了开局一颗海王珠,无边大海任逍遥都市修真:神医归来,已天下无敌重生:跟丈母娘搭伙,赶山致富!开局十连抽,我获得万倍天赋情绪共享之神民国:我是大泼皮傻子处世之道娱乐:我的文娱库时空军工:从宁海警佐到横推列强环球路上,我和我的破车成神了港综:我的小弟是武僧小人物也飒离婚后才发现她藏着最深情的谎言拜金前妻嫌我土,我离婚你哭什么撞破村长老婆好事后,我平步青云从香江大亨到女星干爹巨齿鲨进化:一口吞下一艘核潜艇惹她干嘛?这个小萝莉一拳爆星!信仰神只?不如拜我华夏先祖!重生后才发现原来我们都在等对方神医霸业开学当天,我被列为国家绝密一个灭火的,怎么就最强火法了?娱乐:其实我只是在摆烂东北狩猎,从乞丐到驯鹰人年代1958:片儿警的生活日常女婿是绝世医王直播科普道教,反手召天雷杀鬼开局热芭老公,宠妻狂魔就是我铜铃一响,我成了守渊人景区可以无限复活,游客被杀懵了高术时代改变命运,从穿越西路军开始软件教父:从大学社团开始制霸娱乐:后台嗑瓜子,我火遍全网!灵潮录赶海:从傻子到渔界大亨退休神明,星际爆肝被绑缅北,被迫成王医道天尊,重生潮汕青年少年骇客:我是Ben13